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Abstract. The paper analyzes the physical models
used in the study of the stressed state of geological
rocks. Common physics models include: 1) soil and
foam; 2) pseudo-tensor; 3) geological; 4) Schwer-
Murray; 5) continuous surface of the cap; 6) Mohr-
Coulomb; 6) connected stone. A graphical represen-
tation of the description of the soil and foam model is
given. At the initial stages of loading with small de-
formations, the model behaves linearly elastically.
When the level of deformations increases, it turns
into a non-linear model. The graphical presentation
of the pseudo-tensor model reflects two modes of op-
eration of the model depending on the physical prop-
erties of the material. The geological model is one of
the subspecies of the geological cap model and is
used in solving geo-mechanical problems, as well as
in modeling such materials as concrete. The graphic
representation of the geological model is described
by three curves, the functions of which are given in
the paper. The Schwer-Murray model is an extended
version of the geological model that includes visco-
plasticity to calculate velocity effects and damage
mechanics. The prize is designed for the study of
such materials as soils, concrete and rocks. An im-
proved Schwer-Murray model is the continuous cap
surface model (CSCM), the yield surface of which is
defined by three stress invariants. The Coulomb-
Mohr model is intended for the study of solid ele-
ments, thick shells and SPH particles. It is used to
represent cohesive or non-cohesive rocks, soils, clas-
tic cemented rocks, sandy soils, and other granular
materials. The joint stone model is analogous to the
Drucker-Prager and Coulomb-Mohr models. The ori-
ented crack model is used to model brittle materials
(ceramics) or porous materials, such as concrete,
which undergo failure due to high tensile loads. Ba-
sically, it can be an isotropic elastoplastic or elastic
material with an oriented crack.
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INTRODUCTION

Today, there are a number of classic
rheological models that are used in the study of
the model of the machine-working environment
system. Such models include the following:
Hook, Saint-Venant, Newton, Prandtl, Maxwell,
Voigt, Kelvin, Bingham, Shvedov. For example,
a perfectly elastic body can be described using
the Hooke model. This model can be used in
calculations of springs, vibration limiters, etc.
[1].

The Saint-Venant model describes a perfectly
plastic material or represents the dry friction of a
rigidly plastic material. To some extent, such a
model was used to describe the concrete mixture
[2].

Newton's model describes a perfectly viscous
body and characterizes the operation of frictional
forces within the body or between separate
bodies under the condition that the stresses are
proportional to the gradient of the speed of the
applied load.

In general, it should be noted that real bodies
may exhibit different physical properties under
loads. In some cases, these sets of physical
properties can manifest simultaneously. That is,
bodies with one physical property are rarely
found in nature.

The process of studying the machine-
environment model is carried out through
mathematical or physical modeling. Classical
mathematical modeling consists in displaying

5


https://orcid.org/0000-0002-1888-3687
https://doi.org/10.32347/gbdmm.2024.104.0101
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processes due to analytical dependencies.
However, today, with the development of
computerized and robotic systems, machine
models have become more complex due to the
combination of different process control
systems. On the other hand, efforts to increase
energy efficiency stimulate research and
implementation of synergistic methods of
interaction of working bodies of machines with
the working environment. In addition, there are
ongoing studies related to the attempt to more
accurately describe the model of the working
environment. All this contributes to greater
complexity of physical models of the working
environment.

A significant breakthrough in the study of
solid medium mechanics was the introduction of
numerical modeling methods. Of course, at the
initial stages, such methods were cumbersome in
terms of the use of human resources. However,
with the rapid development of computer
technology, these numerical methods have
become widespread. The most common
numerical method for calculating working
environments today is the finite element method
(FEM). However, this method has a number of
disadvantages, especially when studying discrete
environments. Disadvantages of the finite
element method are partially eliminated by the
discrete element method (DEM).

The rapid development of numerical methods
is facilitated by their implementation in modern
computing systems. Today, there is a large
number of software complexes that allow you to
perform finite element calculations with
sufficient accuracy. The most common platforms
include: Ansys, Nastran, Abaqus, etc. If we
consider the problems of formation and
propagation of cracks, there are separate
software solutions that can perform relatively
detailed calculations of models of environments
with the presence of cracks in them. These
software products include: Warp3D, Franc3D,
Franc2D, Afgrow, Flac3D, FsaCrack. EDEM is
a common software package for modeling by the
method of discrete elements.

Thus, we see a wide range of software prod-
ucts, which is not completely exhaustive. It
should be noted here that these software products
are successfully used for modeling work envi-
ronments. Based on their long-term use, libraries
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of physical models of materials have been com-
piled.

In this work, we will consider the common
physical models used in the modeling of rocks.
Such models include [2]: 1) soil and foam; 2)
pseudo-tensor; 3) geological; 4) Schwer-Murray;
5) continuous surface of the cap; 6) Coulona-
Mora; 6) connected stone.

At the same time, the following types of mod-
els are widely used in the modeling of geological
rocks: 1) brittle fracture; 2) Johnson-Holmquist
for concrete; 3) primed concrete; 4) hysteresis
soil; 5) Ramberg-Osgood; 6) modified Drucker-
Prager model; 7) destruction of soil and foam; 8)
oriented crack; 9) destruction of concrete; 10)
Winfrit for concrete; 11) reinforced concrete
shear wall; 13) concrete beam.

GOAL AND PROBLEM STATEMENT

Conduct an analysis of common physical
models of the working environment for further
description and determination of rational param-
eter values when interacting with the working
bodies of crushing machines.

MAIN PART

Soil and Foam Model. It is a relatively sim-
ple model for describing soils, concrete or de-
formable foam [4]. This model was created for
modeling elastic-plastic materials. The flow
function is described by the following equation:

\p:lz—(a0+alp+a2p2), (1)
where p — pressure; ao, a1, a2 — constants; I — the
second invariant of the deviatoric stress tensor.

The behavior of the model is as follows - at
the initial stages of loading, with small defor-
mations, the model behaves linearly elastically.
When the level of deformations increases, it
turns into a non-linear model. In equation (1), the
second invariant is determined based on the fol-
lowing dependence:

1
Iz = Esijsij ) 2)

where Sjj — deviatoric stress tensor.
The deviatoric stress tensor is determined ac-
cording to the following relationship [4]:
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Sijzcij+(p+q)8ii’ )

where o; - stress tensor; §; - the Kronecker co-

efficient, which takes the value 1 under the con-
dition that the indices are equal to each other and
zero for different values of the indices; q — bulk
viscosity, as viscosity is not included in this
model, then g=0.

It should be noted here that dependencies (2)
and (3) are generalized to describe the volumet-
ric loaded state of the material. So, for example,
when describing soils, one should take into ac-
count stresses and deformations that occur along
different axes, that is, a stressed state that will
repeat the conditions of soil deposition. A simple
model of material destruction in the crushing
chamber takes into account uniaxial loading.

Under the conditions of a triaxial stress state,
the fracture stress will be equal to:

c,=06,—(c,+0,). (4)

For simplicity, we assume that the stresses
arising from the boundary material along the z
and y axes are equal. Then the average failure
stress will be equal to:

o, =(o, +20,)/3. (5)

The second invariant of the deviatoric stress
tensor, taking into account the condition of
equality of stresses along z and y, can be written
as follows:

1l{(2c,, 2 c, ? G, ?
'EKT) (%) 4[5 ” ©)

To determine the unknown coefficients ao, ai,
a2 in (1) a graph of the dependence of the values
of the second invariant of the deviatoric tensor I,
on the average stress is constructed o, . Further,

on the basis of quadratic regression, the un-
known coefficients of equation (1) are deter-
mined.

Under the condition of uniaxial loading, the
second invariant of the deviatoric tensor can be
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determined from the following relationship -

1,
|2:§Gy'

Then dependence (1) can be rewritten as fol-
lows [3]:

o, =(a0+alp+a2p2). (7)

Wl

The dependence of pressure on the change in
material volume is shown in Fig. 1.

In general, it can be noted that this model is
ideal for describing the loaded state of soils, and
can also be used for many rocks.

Pseudo Tensor Model. A material model that
was created for the analysis of embedded steel-
reinforced concrete structures subjected to im-
pulse loads. This model has two modes depend-
ing on the physical properties of the material.
The first mode is a normal flow curve, the second
mode includes two flow curves that are function-
ally dependent on pressure, and also includes
switching parameters between the curves. For
both modes, it is possible to set the LCP load
curve, which is the deformation rate parameter
for the plasticity curve.
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Fig.1. Dependence of pressure on volume change
for the material for the soil and foam model

We will separately consider the modes of the
pseudo-tensor model. The first mode is well
suited for describing standard geological models,
such as the Mohr-Coulomb yield surface with the
Treska boundary, Fig. 2.

The Mohr-Coulomb model with the Treska
limit in combination with the equation of state
was well-recommended for describing the inter-
action of soil with a reinforced concrete structure
[3]. In order to set mode 1 of the model, it is nec-
essary to accept the pseudo-tensor, that ap = a1 =
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a2 = b1 =aor = a1r = 0, then it is necessary to spec-
ify the corresponding pressure values and the
corresponding values of the yield point [3]. The
parameters related to the properties of the rein-
forcement, the initial yield strength and the tan-
gential modulus must also be set to zero.

The second mode. A combination of two
models - destruction and damage. This mode
uses two pressure-dependent flow curves in the
following form:

i ®)

c, =a8,+ :
a, +a,p

y

kpuba Mopa-KynoHa

Mexa Tpecka

G0,

<" Kym mepms

Kozeais

Tuck
Fig. 2. Mohr-Coulomb curve with Tresca limit

The first yield curve best describes the maxi-
mum yield point, while the second curve better
describes the destruction of the material. Here
there is a considerable number of variations in
setting the appropriate curve for the material.
Let's consider the options given in the source
[40].

Option 1. Simple destruction due to stretch-
ing. It is necessary to set coefficients ao, a1, az,
aof, aif . Coefficient by takes the value zero. In
this case, the yield point of the aluminum mate-
rial is taken as the maximum value on the yield
curve, until the maximum principal stress in the
material (o1) does not exceed the ultimate tensile
stress (os). When the moment comes 61 > o, the
yield strength is reduced by some delta, which is
equal to the distance between the curves (the
curve of the maximum vyield strength and the
failure curve) in each of 20 clock steps. That is,
after 20 clock steps, the yield point will be deter-
mined by the material's destruction curve.

Option 2. Tensile failure plus scaling of plas-
tic deformation. The difference from option 1
lies in the introduction of the scale factor n) as a
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function of the effective plastic deformation. The
program calculates the coefficient 1, and then de-
termines the yield strength based on the follow-
ing relationship [3]:

6,=0,+N(0,, —5,), 9)
where omax and o5 determined based on depend-
ency (8).

This version of the model well describes a
material that is strain-hardened or strain-sof-
tened, such as concrete.

Option 3. Tensile failure with damage scaling.
The change in yield strength as a function of
plastic deformation occurs due to physical mech-
anisms such as internal cracking. The degree of
cracking is affected by hydrostatic pressure. This
mechanism can lead to a "restriction” effect in
the behavior of concrete. To take this phenome-
non into account, the "damage" function is intro-
duced, which has the following form:

ep —b;
= 1+ 2| ger.
0 (¢}

B

(10)

Coefficients are set to define the model ao, a,
a2, aof, aif Ta by and parameter n, as a function A.

Geological Cap Model. The model is used in
solving geomechanical problems, as well as in
modeling materials such as concrete. The model
is based on the theory of the geological cap, to
which the theory describing nonlinear kinematic
strengthening [42], [43], [44] is implemented. In
fig. 3 graphical interpretation of the geological
model is displayed.

Mathematical formulation of the model
presented in fig.3 is given in terms of invariants
of the stress tensor. The square root of the second
invariant of the stress deviator tensor is
determined as follows:

1
Vo = \[5858 -

(11)

On the graph fig. 3 the root of the second in-
variant of the stress deviator tensor is a measure
of distortion or shear stress. While the first stress
invariant J; displays the stress tensor.
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Fig. 3. The curve describing the geological cap
model

The geological cap model in fig. 3 is de-
scribed by three different surfaces.

The first surface (f1) is a curve of surface de-
struction. The function of the first curve is writ-
ten as follows:

fl = \/‘JZD _min[Fe (Jl)’Tmises]’

where F,(J,) = a.—yexp(-p,J,) +0J;;
Tmises = |X(Kn) - L(Kn )

The surface f1 is a fixed space that does not
strengthen if it does not have kinematic strength-
ening.

Surface f> represents a geological cap and is
functionally written as follows:

(11)

fz = ‘]2D _Fc (‘]1’ K)’ (12)

where Fc is determined based on the following
dependence

£ ()= X0 LT (4L W] L 09

where is the point of intersection X(ik) with axis
J1 1s determined based on the following depend-
ence:
X(k)=x+RF,(k), (14)
In turn, L(x) it is determined on the basis of a
system of equations:

kif k>0;

L(x)= 15

() {OifKSO. (15)

The hardening parameter « is related to the

plastic volume change by the following relation-
ship:
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&0 =W {1-exp[-D(X(x)-X, )l ,  (16)

The third surface is the stress cut surface,
which is determined by the following function:

f,=T-J,, @a7)

where T — input parameter of the material that

determines its maximum hydrostatic tension.
Condition of plastic behavior of the body:

M =0;i1=123; &, >0.

£ (18)
where Ai — plastic consistency parameter for the
i-th surface. If f; <O then, A, =0 and the re-

sponse will be elastic. If f; >0 then is active i-th
surface and parameter A; is based on dependency
f.=0 [4].

The advantages of the geological model are
the ability to control the amount of expansion
that occurs under the action of shear loading. For
example, in the Coulomb-Mohr and Drucker-
Prager models, plastic expansion continues as
long as shear loads are applied to the model, as a
result of which, in many cases, much greater ex-
pansion is created than in experimental models.
The law of hardening in the geological model al-
lows the surface f, to compress until it crosses
the failure zone at the point X(x), after which the
movement stops.

Control parameters that affect the shape of the
curve f, allows to better reproduce the physics of
the process.

Another advantage of the geological model is
the ability to simulate plastic compaction. In
such models as Coulomb-Mohr and Drucker-
Prager, the volumetric response to deformation
is purely elastic. While in the geologic model,
the volumetric response is elastic in the range up
to the point k. In turn, plastic volumetric defor-
mation (compaction) is generated at a rate con-
trolled by the law of hardening. The inclusion of
kinematic strengthening leads to hysteresis dissi-
pation of energy under conditions of cyclic load-
ing. The work [5] considers nonlinear kinematic
strengthening for the f> surface under the condi-
tions that the C and N parameters are not zero.
Moreover, the f, curve was replaced by a number
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of yield curves. The variable C is the kinematic
strengthening coefficient, and N is the kinematic
strengthening parameter.

A geological model contains a number of pa-
rameters that must be selected to represent a par-
ticular material and which are based on experi-
mental data. Parameters a, B, 6 and vy are usually
estimated by fitting a curve to fracture data taken
from triaxial compression tests. Parameters W, D
and Xo are determined from the law of surface
hardening f.. Parameter W represents the porous
fraction of the uncompressed sample, D deter-
mines the slope of the initial load curve during
hydrostatic compression. The value of Xo is the
ratio of the major axis to the minor quarter of the
ellipse defining the surface f,. In [6] additional
recommendations are given for the selection of
geological model parameters based on experi-
mental data.

Schwer-Murray model. This model is an ex-
tended version of the geological model that in-
cludes viscoplasticity to calculate velocity ef-
fects and damage mechanics. The main provi-
sions of the model are outlined in the source [7].
The Schwer-Murray model is designed for the
study of materials such as soils, concrete and
rocks.

The main parameters of the model are: den-
sity, shear modulus; volumetric module; Griinei-
sen coefficient (usually taken as zero); impact
speed parameter; shear failure parameters
(a,B,y,0); damage mechanics parameter; param-
eters of kinematic hardening deformation
(N*,c®; the initial ellipticity of the cap surface;
the principal stress tensor Ji; parameter of
strengthening of compaction due to shear
stresses; plastic damage mechanics parameters;
parameters of plastic volumetric deformation
(W, D1,D2); the maximum permissible increase
in deformation; parameters of brittle fracture me-
chanics; scalable torsion; scaling for three-axis
expansion; viscoplastic relaxation time.

The parameter should be specified separately
FAILFL, which determines whether damage ac-
cumulation should be applied to the overall stress
tensor oij or to the deviatoric stress tensor Sjj. In
addition to this parameter FAILFL used in the
program LS-DYNA to remove completely dam-
aged material destruction elements.

As noted in the source [3] a more advanced
Schwer-Murray model and at the same time its
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extension is a model called CSCM (Continuous
Surface Cap Model).

Model CSCM is a model of a smooth contin-
uous surface of the cap. It is used for modeling
solid materials. In the program LS-DYNA for
this model, it is possible to set your own material
parameters [3]. Graphic representation of the
model CSCM shown in fig. 4.

Mobepxha 33Buzy ["nadkud nepemuH

[anka

Tuck

Miunicms npu 3dbuzabi

Fig. 4. Model CSCM

As can be seen from fig. 4 model CSCM has
a smooth transition between the yield surface and
the shear hardening cap. Velocity effects are
modeled using viscoplasticity. A complete de-
scription of the model is given in the source [8].
The yield surface is defined by three stress invar-
lants:

1 1

3 =30, =288 3. =38S8iSe (19)

]

where J1 — the first invariant of the stress tensor;
Jo — the second invariant of the deviatoric stress
tensor; Jz — the third invariant of the deviatoric
stress tensor; P — pressure; Sjj — deviatoric stress
tensor.

The yield function is related to the three in-
variants (19) and the cap strengthening coeffi-
cient « as follows:

f (Jl,Jz,Jg, K) =J,-C’F’F..  (20)
where F¢ — failure surface from shear loads; Fc —
cap strengthening surface; { — Rubin's function.

The strength of concrete is modeled by the
shear surface in tension and low all-round pres-
sure regimes:

R (J,)=a—rexp(-pJ;)+6J,. (21)
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where are the parameters a, B, A, 0 are deter-
mined by adjusting the surface of the model to
experimental measurements of triaxial compres-
sive strength carried out on simple concrete cyl-
inders.

Ruby's scale function ( determines the
strength of concrete for any stress state relative
to the strength for triaxial compression, in the
form { Fr. That is, the strength in triaxial torsion
is determined as Q1Fy. In turn, strength in triaxial
tension — Q2F¢. In turn Q is defined as:

Q, =0, —2A, exp (_Br]l) +0,J;; 22)
Q,=a, -2, eXp(—Ble)+9231.
Concrete strength is modeled using a cap sur-
face and a shear surface in low to high pressure
regimes. The cap is used to model the plastic vol-
ume change. The isotropic hardening cap is a
function that consists of two parts and can take
the value 1 or the shape of an ellipse:

N T [T )
2[X () =L (x)]

. (23)

Cross section of the cap with the axis J; is at
a point X(x) and depends on the ellipticity factor
R:

X(k)=L(x)+RR[L(x)],  (24)

Volumetric plastic deformation is determined
by a similar dependence to (16) in which the pa-
rameters appear D1 ta D2, which determine the
shape of the volume strain pressure curves.

Under unconfined compression, the stress-
strain state of concrete exhibits nonlinearity and
expansion before the peak. This behavior is mod-
eled by the initial shear yield surface NwnFt,
which hardens until it coincides with the final
shear yield surface Fr. Parameter Nn determines
the start of strengthening. The second parameter
Ch determines the rate of hardening.

The model includes a scalar fracture parame-
ter d, which transforms the viscoplastic stress
tensor without fracture into the stress tensor with
fracture. Damage accumulation is based on two
distinct theories, namely brittle and plastic fail-
ure. Plastic failure is determined on the basis of
common components of deformation:
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1

—O..&

T = i&ij

T3 (25)
Stress components ojj in the equation (25) are
elastoplastic and are designed to apply damage
and speed effects
Brittle fracture depends on the main defor-
mation as follows:

_ 2
T, =+JE€ppy -

As damage accumulates, the parameter d in-
creases from an initial value of zero to one based
on the following dependencies:

Plastic failure:

(26)

0.999 1+D
d = -1, 27
(Tt) D |:1+ De—C(rt—rm) :| ( )
Brittle failure:
d 1+B
d = —max -1, 28
(Tt) B ‘:1+ BefA(‘ct—rm) :| ( )

where are the parameters A, B, C ta D specify
the shape of the softening curve, which is con-
structed in stress-displacement or stress-strain
coordinates. Parameter dmax represents the maxi-
mum level of damage that can be achieved.

Coulomb-Mohr model. Designed for the
study of solid elements, thick shells and SPH
particles. Used to represent cohesive or non-co-
hesive rocks, soils, clastic cemented rocks, sandy
soils, and other granular materials.

A simple soil model is simulated by defining
five parameters: density, shear modulus, Pois-
son's ratio, friction angle, cohesion value (shear
strength at zero normal stress), dilation angle (ra-
dians).

The yield surface is given by the equation:

T, =C+0, tan(op), (29)
where C — parameter that determines of the co-
hesion; ¢ - friction angle; on — normal tension;
Tnh — Maximum shear stress.

The plastic potential function has the form:
BG, e — O min +CONSE, (30)
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where B is determined based on the following
dependence

1+sin
_Lwsin(y) 31)
1-sin(y)
Plastic deformation is determined:
f2
€, = gspijspij , (32)

The angles of friction and expansion ¢ and y
can change depending on the plastic deformation
(corresponding parameters LCPHIEP and LCP-
SIEP). For modeling strongly consolidated ma-
terials with large shear strains, as the strain in-
creases, the expansion angle usually decreases to
zero, and the friction angle decreases to a lower
value. Also, the shear modulus can decrease un-
der similar conditions. To define parameters
LCPHIEP and LCPSIEP tabular values must be
loaded.

Load curves LCCPDR, LCCPT, LCCJDR
and LCCJT allow additional cohesion to be
added as a function of time. Additional cohesion
is intended for use in the initial stages of analysis
to ensure that gravity or other loads are applied
without cracking or yielding, and to control the
cracking or yielding process. If the parameters
LCCPDR, LCCPT, LCCJDR and LCCJT are not
specified, then additional cohesion is not applied
[3].

Parameter LCSFAC allows you to set the
strength factor as a function of time. This func-
tion is designed to gradually reduce the strength
of the material in order to study the safety fac-
tors. To set the coefficient values, it is necessary
to load the load curve. If there is no curve, it is
possible to set a constant coefficient of 1. When
setting values greater than one, problems with
stability may arise. An alternative solution for in-
troducing time-dependent properties is the abil-
ity to define time functions in the parameters
GMOD, CVAL and PHI using load curves for
parameters LCGMT, LCCVT and LCPHT in ac-
cordance [3].

The parameter is responsible for choosing a
soil or rock model NJOINT. Parameter for soil
NJOINT is taken as equal 0. Modeling of rocks

12

is carried out according to a similar mechanism
that is embedded in the model - connected stone.

When modeling rocks, the parameter LOCAL
must be equal 0. This parameter corresponds to
the coordinate system in which the angles will be
determined — DIP ta DIPANG.

In the model, it is possible to set the anisot-
ropy due to the parameter ANISO, which applies
to elastic shear stiffness in global planes XZ and
YZ.

Model of Jointed Rock. This material model
is similar to the Drucker-Prager and Coulomb-
Mohr models. In order not to take into account
the flow surfaces, it is necessary to set the value
of the parameter ELASTIC equal 1.

Form factor of the material RKF it is not de-
sirable to set it to a value below 0.75.

Just as in the Coulomb-Mohr model, it is pos-
sible with the help of load curves LCCPDR,
LCCPT, LCCJDR and LCCJT specify additional
cohesion as a function of time.

Isotropic Elastic-Plastic With Oriented
Cracks model. This model is used to model brit-
tle materials (ceramics) or porous materials, such
as concrete, which undergo failure due to high
tensile loads. Basically, it can be an isotropic
elastoplastic or elastic material with an oriented
crack. Mises flow condition:

3
(&)

=), ——, 33
P=4J, 3 (33)

where Jz is determined based on the equation (2);
plastic stress o, is a function of the effective

plastic strain &P
strengthening Ej:

and modulus of plastic

6, =0, +E gk, (34)
Effective plastic deformation:
t
Ebgr :IdSSﬁ ) (35)
0

The pressure in this model is determined by
evaluating the equations of state. In general, the
fracture model with an oriented crack is based on
the maximum stress criterion.
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CONCLUSIONS

Based on the analysis of common physical
models of geological rocks, the Coulomb-Mohr
model is best suited for describing strong rocks
such as granite, gabbro, and marble. However,
the geological cap and Schwer-Murray models
are more flexible and universal. The specified
models contain appropriate algorithms that allow
obtaining a better picture of the stressed and de-
formed states under the conditions of dynamic
destruction of materials. In the Coulomb-Mohr
model, the volumetric response to deformation is
purely elastic. While in the geological model or
Schwer-Murray model, the volumetric response
under loads is elastic in the range up to some
point k. After point k, the system passes into the
zone of plastic volumetric deformation (compac-
tion), which is generated at a rate controlled by
the law of hardening. In turn, kinematic strength-
ening leads to hysteresis dissipation of energy
under conditions of cyclic loading. In addition,
the Schwer-Murray model implements a mecha-
nism that allows investigating the accumulation
of damage. The shortcomings of the geologic
model and the Schwer-Murray model include a
significant set of parameters that can be deter-
mined purely experimentally.
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AHaJi3 nomMpeHuX reoI0riYHNX Moestei
MaTepiajiB

€seen Miugyx

Kuiscoruti nayionanvrutl ynisepcumem
byoisHuYymea i apximexmypu

AnoTtamnia. B poboti BukoHanuii anamiz ¢izuu-
HUX MOJeNeH, SIKi BUKOPHUCTOBYIOTBCS MpPU JOCIHI-
JOKSHHI HAIPY>KeHOTO CTaHy TeoJoriYHuX nopia. Jo
NOMMpeHUX (PI3MYHUMHU MOjeNel, BITHOCAThCS: 1)
TPYHTY Ta MiHH; 2) TICEBI0 — TEH30D; 3) Te0JIOTiuHa;
4) llIBepa-Mrioppes; 5) KOHTHHYyaJTbHA TOBEPXHS II1a-
nku; 6) Kymona-Mopa; 6) 3’eqnanoro kamento. Ha-
BeJICHO TpadivHe NpeICTaBICHHS OMICY MOJIENi IPy-
HTa Ta miHu. Ha movaTkoBuX eTanax HaBaHTaXEHHS
MpH Majux Ae(opmariisx MoJelb MOBOJIUTH cede JIi-
HiltHO-TIpy>kHO. [Ipu 30inbIeHH] piBHS Aedopmartii
NIEPETBOPIOETECSL B HeENiHiMHY Monenb. ['padiune
NpeACTaBICHHs MO/l TICEBJ0-TEH30pa BitoOpaxae
JIBa PSKUMHU POOOTH MOJICITI B 3aJIC)KHOCTI B (i3u-
YHUX BIACTUBOCTEH Marepiany. ['eomoriaaa Mojenb
MpeJICTaBIISIE 13 ce0e OJIMH 13 MiABUIIB MOJIEII T'€0JI0-
TYHOI IIANKK 1 BUKOPUCTOBYETHCS MPH BUPILICHHI
reOMEeXaHIYHUX MpoOJieM, a TaKOX TPH MOJEIIO-
BaHHI TakMX MaTepiaiis, Ak 0eroH. ['padiune npen-
CTaBJICHHS T'€0JIOT1YHOI MOJIEJIi ONUCYETHCS TPHOMA
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MODELING WORKFLOWS

KpUBHMH, QYHKIII, IKUX HaBeJeHi B poOoTi. Monenb
LlIBepa-Mroppest € po3IIUPEHOIO BEPCI€I0 TEOIOTIU-
HOI Moe, sKa BKJIIOYA€ BA3KOIJIACTHUYHICTh IS
PO3paxyHKy IIBUIKICHUX €(DEKTiB i MEXaHIKH IOIII-
KopkeHb. [Ipu3Hadena Ui MOCiKEeHHST TaKUX Ma-
TepiaiiB, SIK TPYHTH, OETOH Ta ripchki mopoan. Bao-
CKOoHaneHow Mozeino IlIBepa-Mroppes € Mozenb
KoHTHHYanbHOI moBepxHi manku (CSCM), mosep-
XHSI TEKy4JOCTi 5IKO1 BU3HAYA€ThCSA TPhOMa 1HBapiaH-
Tamu HanpyxeHb. Mogens Kymona-Mopa npusHa-
YeHa JUIst AOCIiIKEHHSI TBEPANX €IEMEHTIB, TOBCTUX
000710HOK 1 yactTuHOK SPH. BukopucroByeThest aist
MIPEACTABICHHS 3B SI3HUX a00 HE3B’S3HUX TiPCHKHUX

14

MOpiA, IPYHTIB, YIaMKOBHX 3LEMEHTOBAaHUX TipCh-
KHUX TIOPiJl, MIMAaHUX TPYHTIB Ta IHIIUX 3€PHUCTUX
MarepianiB. Mozenb 3’€IHaHOTO KaMEHIO € aHallo-
roM mojenei Jpykepa-Ilparepa ta Kynona-Mopa.
Mopnens OpieHTOBaHOI TPIIIMHU BHKOPHUCTOBYETHCS
IUIST MOJCITIOBAHHS KPUXKHX MarepiajiB (KepaMika)
a00 MOpHUCTUX MaTepialliB, TaKHUX SIK OETOH, 1 sIKi 3a-
3HAIOTh PyHHYBaHHsS BHACHiJOK BEJMKHX HaBaHTa-
JKEeHb po3TATy. B ocHOBHOMY 11 MOe OyTH 130TpoO-
MTHUH TPY>KHOIUTACTUYHUHN a00 TPYKHUN MaTepiai i3
OpiEHTOBAHOIO TPILIHOIO.

Kuro4ogi ciioBa: iceBao-TeH30p, iHBapiaHT, Tpa-
HUI TEKyYOCTi, TUIacTHYHA aedopmarlis, pyiHy-
BaHHsI, 3MiIJHEHHSI, OETOH, TIPCbKi MOPOIH, TPYHT.
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