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Abstract. The paper analyzes the physical models 

used in the study of the stressed state of geological 

rocks. Common physics models include: 1) soil and 

foam; 2) pseudo-tensor; 3) geological; 4) Schwer-

Murray; 5) continuous surface of the cap; 6) Mohr-

Coulomb; 6) connected stone. A graphical represen-

tation of the description of the soil and foam model is 

given. At the initial stages of loading with small de-

formations, the model behaves linearly elastically. 

When the level of deformations increases, it turns 

into a non-linear model. The graphical presentation 

of the pseudo-tensor model reflects two modes of op-

eration of the model depending on the physical prop-

erties of the material. The geological model is one of 

the subspecies of the geological cap model and is 

used in solving geo-mechanical problems, as well as 

in modeling such materials as concrete. The graphic 

representation of the geological model is described 

by three curves, the functions of which are given in 

the paper. The Schwer-Murray model is an extended 

version of the geological model that includes visco-

plasticity to calculate velocity effects and damage 

mechanics. The prize is designed for the study of 

such materials as soils, concrete and rocks. An im-

proved Schwer-Murray model is the continuous cap 

surface model (CSCM), the yield surface of which is 

defined by three stress invariants. The Coulomb-

Mohr model is intended for the study of solid ele-

ments, thick shells and SPH particles. It is used to 

represent cohesive or non-cohesive rocks, soils, clas-

tic cemented rocks, sandy soils, and other granular 

materials. The joint stone model is analogous to the 

Drucker-Prager and Coulomb-Mohr models. The ori-

ented crack model is used to model brittle materials 

(ceramics) or porous materials, such as concrete, 

which undergo failure due to high tensile loads. Ba-

sically, it can be an isotropic elastoplastic or elastic 

material with an oriented crack.    

Keywords: pseudo-tensor, invariant, yield 

strength, plastic deformation, destruction, strength-

ening, concrete, rocks, soil. 

INTRODUCTION 

Today, there are a number of classic 

rheological models that are used in the study of 

the model of the machine-working environment 

system. Such models include the following: 

Hook, Saint-Venant, Newton, Prandtl, Maxwell, 

Voigt, Kelvin, Bingham, Shvedov. For example, 

a perfectly elastic body can be described using 

the Hooke model. This model can be used in 

calculations of springs, vibration limiters, etc. 

[1].  

The Saint-Venant model describes a perfectly 

plastic material or represents the dry friction of a 

rigidly plastic material. To some extent, such a 

model was used to describe the concrete mixture 

[2]. 

Newton's model describes a perfectly viscous 

body and characterizes the operation of frictional 

forces within the body or between separate 

bodies under the condition that the stresses are 

proportional to the gradient of the speed of the 

applied load.  

In general, it should be noted that real bodies 

may exhibit different physical properties under 

loads. In some cases, these sets of physical 

properties can manifest simultaneously. That is, 

bodies with one physical property are rarely 

found in nature.   

The process of studying the machine-

environment model is carried out through 

mathematical or physical modeling. Classical 

mathematical modeling consists in displaying 
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processes due to analytical dependencies. 

However, today, with the development of 

computerized and robotic systems, machine 

models have become more complex due to the 

combination of different process control 

systems. On the other hand, efforts to increase 

energy efficiency stimulate research and 

implementation of synergistic methods of 

interaction of working bodies of machines with 

the working environment. In addition, there are 

ongoing studies related to the attempt to more 

accurately describe the model of the working 

environment. All this contributes to greater 

complexity of physical models of the working 

environment.  

A significant breakthrough in the study of 

solid medium mechanics was the introduction of 

numerical modeling methods. Of course, at the 

initial stages, such methods were cumbersome in 

terms of the use of human resources. However, 

with the rapid development of computer 

technology, these numerical methods have 

become widespread. The most common 

numerical method for calculating working 

environments today is the finite element method 

(FEM). However, this method has a number of 

disadvantages, especially when studying discrete 

environments. Disadvantages of the finite 

element method are partially eliminated by the 

discrete element method (DEM).  

The rapid development of numerical methods 

is facilitated by their implementation in modern 

computing systems. Today, there is a large 

number of software complexes that allow you to 

perform finite element calculations with 

sufficient accuracy. The most common platforms 

include: Ansys, Nastran, Abaqus, etc. If we 

consider the problems of formation and 

propagation of cracks, there are separate 

software solutions that can perform relatively 

detailed calculations of models of environments 

with the presence of cracks in them. These 

software products include: Warp3D, Franc3D, 

Franc2D, Afgrow, Flac3D, FsaCrack. EDEM is 

a common software package for modeling by the 

method of discrete elements.  

Thus, we see a wide range of software prod-

ucts, which is not completely exhaustive. It 

should be noted here that these software products 

are successfully used for modeling work envi-

ronments. Based on their long-term use, libraries 

of physical models of materials have been com-

piled. 

In this work, we will consider the common 

physical models used in the modeling of rocks. 

Such models include [2]: 1) soil and foam; 2) 

pseudo-tensor; 3) geological; 4) Schwer-Murray; 

5) continuous surface of the cap; 6) Coulona-

Mora; 6) connected stone.   

At the same time, the following types of mod-

els are widely used in the modeling of geological 

rocks: 1) brittle fracture; 2) Johnson-Holmquist 

for concrete; 3) primed concrete; 4) hysteresis 

soil; 5) Ramberg-Osgood; 6) modified Drucker-

Prager model; 7) destruction of soil and foam; 8) 

oriented crack; 9) destruction of concrete; 10) 

Winfrit for concrete; 11) reinforced concrete 

shear wall; 13) concrete beam. 

GOAL AND PROBLEM STATEMENT 

Conduct an analysis of common physical 

models of the working environment for further 

description and determination of rational param-

eter values when interacting with the working 

bodies of crushing machines.  

MAIN PART 

Soil and Foam Model. It is a relatively sim-

ple model for describing soils, concrete or de-

formable foam [4]. This model was created for 

modeling elastic-plastic materials. The flow 

function is described by the following equation: 
2

2 0 1 2I (a a p a p )     ,               (1) 

where p – pressure; а0, a1, a2 – constants; І2 – the 

second invariant of the deviatoric stress tensor.  

The behavior of the model is as follows - at 

the initial stages of loading, with small defor-

mations, the model behaves linearly elastically. 

When the level of deformations increases, it 

turns into a non-linear model. In equation (1), the 

second invariant is determined based on the fol-

lowing dependence:  

 

2 ij ij

1
I S S

2
 ,                        (2) 

 

where  Sij – deviatoric stress tensor.  

The deviatoric stress tensor is determined ac-

cording to the following relationship [4]: 
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 ij ij ijS p q     ,              (3) 

 

where 
ij  - stress tensor; 

ij  - the Kronecker co-

efficient, which takes the value 1 under the con-

dition that the indices are equal to each other and 

zero for different values of the indices; q – bulk 

viscosity, as viscosity is not included in this 

model, then q=0. 

It should be noted here that dependencies (2) 

and (3) are generalized to describe the volumet-

ric loaded state of the material. So, for example, 

when describing soils, one should take into ac-

count stresses and deformations that occur along 

different axes, that is, a stressed state that will 

repeat the conditions of soil deposition. A simple 

model of material destruction in the crushing 

chamber takes into account uniaxial loading.  

Under the conditions of a triaxial stress state, 

the fracture stress will be equal to: 

 

р x z y( )      .                (4) 

 

For simplicity, we assume that the stresses 

arising from the boundary material along the z 

and y axes are equal. Then the average failure 

stress will be equal to:  

 

 c x z2 / 3     .                (5) 

 

The second invariant of the deviatoric stress 

tensor, taking into account the condition of 

equality of stresses along z and y, can be written 

as follows: 

 
2 2 2

x z z x z x
2

21
I

2 3 3 3

  
        

        
       

,  (6) 

 

To determine the unknown coefficients а0, a1, 

a2 in (1) a graph of the dependence of the values 

of the second invariant of the deviatoric tensor I2 

on the average stress is constructed c . Further, 

on the basis of quadratic regression, the un-

known coefficients of equation (1) are deter-

mined. 

Under the condition of uniaxial loading, the 

second invariant of the deviatoric tensor can be 

determined from the following relationship - 

2

2 y

1
I

3
  .  

Then dependence (1) can be rewritten as fol-

lows [3]: 

 

 2 2

y 0 1 2

1
a a p a p

3
    .           (7) 

 

The dependence of pressure on the change in 

material volume is shown in Fig. 1.  

In general, it can be noted that this model is 

ideal for describing the loaded state of soils, and 

can also be used for many rocks.  

Pseudo Tensor Model. A material model that 

was created for the analysis of embedded steel-

reinforced concrete structures subjected to im-

pulse loads. This model has two modes depend-

ing on the physical properties of the material. 

The first mode is a normal flow curve, the second 

mode includes two flow curves that are function-

ally dependent on pressure, and also includes 

switching parameters between the curves. For 

both modes, it is possible to set the LCP load 

curve, which is the deformation rate parameter 

for the plasticity curve. 

 
Fig.1. Dependence of pressure on volume change 

for the material for the soil and foam model 
 

 We will separately consider the modes of the 

pseudo-tensor model. The first mode is well 

suited for describing standard geological models, 

such as the Mohr-Coulomb yield surface with the 

Treska boundary, Fig. 2. 

The Mohr-Coulomb model with the Treska 

limit in combination with the equation of state 

was well-recommended for describing the inter-

action of soil with a reinforced concrete structure 

[3]. In order to set mode 1 of the model, it is nec-

essary to accept the pseudo-tensor, that а0 = a1 = 
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a2 = b1 = a0f = a1f = 0, then it is necessary to spec-

ify the corresponding pressure values and the 

corresponding values of the yield point [3]. The 

parameters related to the properties of the rein-

forcement, the initial yield strength and the tan-

gential modulus must also be set to zero.  

The second mode. A combination of two 

models - destruction and damage. This mode 

uses two pressure-dependent flow curves in the 

following form: 

 

y 0

1 2

p
a

a a p
  


.                   (8) 

 

 
Fig. 2. Mohr-Coulomb curve with Tresca limit 
 

The first yield curve best describes the maxi-

mum yield point, while the second curve better 

describes the destruction of the material. Here 

there is a considerable number of variations in 

setting the appropriate curve for the material. 

Let's consider the options given in the source 

[40].  

Option 1. Simple destruction due to stretch-

ing. It is necessary to set coefficients  а0, a1, a2, 

a0f, a1f . Coefficient b1  takes the value zero. In 

this case, the yield point of the aluminum mate-

rial is taken as the maximum value on the yield 

curve, until the maximum principal stress in the 

material (σ1) does not exceed the ultimate tensile 

stress (σв). When the moment comes σ1 > σв the 

yield strength is reduced by some delta, which is 

equal to the distance between the curves (the 

curve of the maximum yield strength and the 

failure curve) in each of 20 clock steps. That is, 

after 20 clock steps, the yield point will be deter-

mined by the material's destruction curve. 

Option 2. Tensile failure plus scaling of plas-

tic deformation. The difference from option 1 

lies in the introduction of the scale factor η as a 

function of the effective plastic deformation. The 

program calculates the coefficient η, and then de-

termines the yield strength based on the follow-

ing relationship [3]: 

 

 п в max в      ,           (9) 

 

where σmax and σв determined based on depend-

ency (8). 

This version of the model well describes a 

material that is strain-hardened or strain-sof-

tened, such as concrete.  

Option 3. Tensile failure with damage scaling. 

The change in yield strength as a function of 

plastic deformation occurs due to physical mech-

anisms such as internal cracking. The degree of 

cracking is affected by hydrostatic pressure. This 

mechanism can lead to a "restriction" effect in 

the behavior of concrete. To take this phenome-

non into account, the "damage" function is intro-

duced, which has the following form: 

 
1bp

p

в0

p
1 d


 

    
 

 .           (10) 

 

Coefficients are set to define the model а0, a1, 

a2, a0f, a1f та b1 and parameter η, as a function λ. 

Geological Cap Model. The model is used in 

solving geomechanical problems, as well as in 

modeling materials such as concrete. The model 

is based on the theory of the geological cap, to 

which the theory describing nonlinear kinematic 

strengthening [42], [43], [44] is implemented. In 

fig. 3 graphical interpretation of the geological 

model is displayed. 

Mathematical formulation of the model 

presented in fig.3 is given in terms of invariants 

of the stress tensor. The square root of the second 

invariant of the stress deviator tensor is 

determined as follows: 

 

2D ij ij

1
J S S

2
 .                 (11) 

 

On the graph fig. 3 the root of the second in-

variant of the stress deviator tensor is a measure 

of distortion or shear stress. While the first stress 

invariant J1 displays the stress tensor. 
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Fig. 3. The curve describing the geological cap 

model 

  
The geological cap model in fig. 3 is de-

scribed by three different surfaces. 

The first surface (f1) is a curve of surface de-

struction. The function of the first curve is writ-

ten as follows: 

 

 1 2D e 1 misesf J min[F J ,T ],         (11)  

where e 1 1 1 1F (J ) exp( J ) J       ;

 mises n nT X( ) L    .  

The surface f1 is a fixed space that does not 

strengthen if it does not have kinematic strength-

ening.  

Surface f2 represents a geological cap and is 

functionally written as follows: 

 

 2 2D c 1f J F J ,K  ,              (12) 

 

where Fc is determined based on the following 

dependence 

 

     
2 2

c 1 1

1
F J , X[ ] L J L

R
               , (13) 

 

where is the point of intersection X(κ) with axis 

J1 is determined based on the following depend-

ence: 

   eX RF k   ,                (14) 

 

In turn, L(κ) it is determined on the basis of a 

system of equations: 

 

 
k if 0;

L
0 if 0.

 
  

 
                    (15) 

 

The hardening parameter κ is related to the 

plastic volume change by the following relation-

ship:  

 

   p

v 0W 1 exp[ D X X ]      ,      (16) 

  

The third surface is the stress cut surface, 

which is determined by the following function:  

 

3 1f T J  ,                    (17)  

  

where Т – input parameter of the material that 

determines its maximum hydrostatic tension. 

Condition of plastic behavior of the body: 

 

i i if 0; i 1,2,3; 0.              (18) 

  

where λi – plastic consistency parameter for the 

i-th surface. If fі <0  then,  
i = 0 and the re-

sponse will be elastic. If fі >0 then is active і-th 

surface and parameter λi is based on dependency 

if 0  [4]. 

The advantages of the geological model are 

the ability to control the amount of expansion 

that occurs under the action of shear loading. For 

example, in the Coulomb-Mohr and Drucker-

Prager models, plastic expansion continues as 

long as shear loads are applied to the model, as a 

result of which, in many cases, much greater ex-

pansion is created than in experimental models. 

The law of hardening in the geological model al-

lows the surface f2 to compress until it crosses 

the failure zone at the point  X(κ), after which the 

movement stops.  

Control parameters that affect the shape of the 

curve f2 allows to better reproduce the physics of 

the process. 

Another advantage of the geological model is 

the ability to simulate plastic compaction. In 

such models as Coulomb-Mohr and Drucker-

Prager, the volumetric response to deformation 

is purely elastic. While in the geologic model, 

the volumetric response is elastic in the range up 

to the point κ. In turn, plastic volumetric defor-

mation (compaction) is generated at a rate con-

trolled by the law of hardening. The inclusion of 

kinematic strengthening leads to hysteresis dissi-

pation of energy under conditions of cyclic load-

ing. The work [5] considers nonlinear kinematic 

strengthening for the f2 surface under the condi-

tions that the С and N parameters are not zero. 

Moreover, the f2 curve was replaced by a number 
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of yield curves.  The variable C is the kinematic 

strengthening coefficient, and N is the kinematic 

strengthening parameter.  

A geological model contains a number of pa-

rameters that must be selected to represent a par-

ticular material and which are based on experi-

mental data. Parameters α, β, θ and γ are usually 

estimated by fitting a curve to fracture data taken 

from triaxial compression tests. Parameters W, D 

and X0 are determined from the law of surface 

hardening f2. Parameter W represents the porous 

fraction of the uncompressed sample,  D deter-

mines the slope of the initial load curve during 

hydrostatic compression. The value of X0 is the 

ratio of the major axis to the minor quarter of the 

ellipse defining the surface f2. In [6] additional 

recommendations are given for the selection of 

geological model parameters based on experi-

mental data.   
Schwer-Murray model. This model is an ex-

tended version of the geological model that in-

cludes viscoplasticity to calculate velocity ef-

fects and damage mechanics. The main provi-

sions of the model are outlined in the source [7]. 

The Schwer-Murray model is designed for the 

study of materials such as soils, concrete and 

rocks.  

The main parameters of the model are: den-

sity, shear modulus; volumetric module; Grünei-

sen coefficient (usually taken as zero); impact 

speed parameter; shear failure parameters 

(α,β,γ,θ); damage mechanics parameter; param-

eters of kinematic hardening deformation 

(Nα,cα); the initial ellipticity of the cap surface; 

the principal stress tensor J1; parameter of 

strengthening of compaction due to shear 

stresses; plastic damage mechanics parameters; 

parameters of plastic volumetric deformation 

(W, D1,D2); the maximum permissible increase 

in deformation; parameters of brittle fracture me-

chanics; scalable torsion; scaling for three-axis 

expansion; viscoplastic relaxation time. 

The parameter should be specified separately 

FAILFL, which determines whether damage ac-

cumulation should be applied to the overall stress 

tensor σij or to the deviatoric stress tensor Sij. In 

addition to this parameter FAILFL used in the 

program LS-DYNA to remove completely dam-

aged material destruction elements. 

As noted in the source [3] a more advanced 

Schwer-Murray model and at the same time its 

extension is a model called CSCM (Continuous 

Surface Cap Model). 

Model CSCM is a model of a smooth contin-

uous surface of the cap. It is used for modeling 

solid materials. In the program  LS-DYNA for 

this model, it is possible to set your own material 

parameters [3]. Graphic representation of the 

model CSCM shown in fig. 4.   

 

Fig. 4. Model CSCM 

 

As can be seen from fig. 4 model CSCM has 

a smooth transition between the yield surface and 

the shear hardening cap. Velocity effects are 

modeled using viscoplasticity. A complete de-

scription of the model is given in the source [8]. 

The yield surface is defined by three stress invar-

iants:  

 

1 2 ij ij 3 ij ik ki

1 1
J 3P; J S S ; J S S S .

2 3
       (19) 

 

where J1 – the first invariant of the stress tensor;  

J2 – the second invariant of the deviatoric stress 

tensor; J3 – the third invariant of the deviatoric 

stress tensor; P – pressure; Sij – deviatoric stress 

tensor. 

The yield function is related to the three in-

variants (19) and the cap strengthening coeffi-

cient κ as follows: 

 

  2 2

1 2 3 2 f cf J , J , J , J F F   .       (20)  

 

where Ff
2 – failure surface from shear loads; Fc – 

cap strengthening surface; ζ – Rubin's function.  

The strength of concrete is modeled by the 

shear surface in tension and low all-round pres-

sure regimes:  

 

   f 1 1 1F J exp J J      .     (21) 
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where are the parameters α, β, λ, θ are deter-

mined by adjusting the surface of the model to 

experimental measurements of triaxial compres-

sive strength carried out on simple concrete cyl-

inders.  

Ruby's scale function ζ determines the 

strength of concrete for any stress state relative 

to the strength for triaxial compression, in the 

form  ζ Ff. That is, the strength in triaxial torsion 

is determined as Q1Ff. In turn, strength in triaxial 

tension – Q2Ff . In turn Q is defined as:  

 

 

 

1 1 1 1 1 1 1

2 2 2 2 1 2 1

Q exp J J ;

Q exp J J .

    

    
       (22) 

Concrete strength is modeled using a cap sur-

face and a shear surface in low to high pressure 

regimes. The cap is used to model the plastic vol-

ume change. The isotropic hardening cap is a 

function that consists of two parts and can take 

the value 1 or the shape of an ellipse: 

 

 
     

   

1 1 1

c 1 2

J L J L J L
F J , 1

2 X L

             
    

.  (23) 

 

Cross section of the cap with the axis J1 is at 

a point X(κ) and depends on the ellipticity factor 

R: 

     fX L RF L       ,       (24) 

 

Volumetric plastic deformation is determined 

by a similar dependence to (16) in which the pa-

rameters appear D1 та D2, which determine the 

shape of the volume strain pressure curves. 

Under unconfined compression, the stress-

strain state of concrete exhibits nonlinearity and 

expansion before the peak. This behavior is mod-

eled by the initial shear yield surface NHFf, 

which hardens until it coincides with the final 

shear yield surface Ff. Parameter NH determines 

the start of strengthening. The second parameter 

СH determines the rate of hardening.  

The model includes a scalar fracture parame-

ter d, which transforms the viscoplastic stress 

tensor without fracture into the stress tensor with 

fracture. Damage accumulation is based on two 

distinct theories, namely brittle and plastic fail-

ure. Plastic failure is determined on the basis of 

common components of deformation: 

 

с ij ij

1

2
    ,               (25) 

 

Stress components σij in the equation (25) are 

elastoplastic and are designed to apply damage 

and speed effects  

Brittle fracture depends on the main defor-

mation as follows:  

 
2

t maxE   .                 (26) 

 

As damage accumulates, the parameter d in-

creases from an initial value of zero to one based 

on the following dependencies:  

Plastic failure: 

 

   t 0 t
t C

0.999 1 D
d 1

D 1 De
  

 
    

,        (27) 

 

Brittle failure: 

 

   t 0 t

max
t A

d 1 B
d 1

B 1 Be
  

 
    

,           (28) 

 

where are the parameters A, B, C та D specify 

the shape of the softening curve, which is con-

structed in stress-displacement or stress-strain 

coordinates. Parameter dmax represents the maxi-

mum level of damage that can be achieved. 

Coulomb-Mohr model. Designed for the 

study of solid elements, thick shells and SPH 

particles. Used to represent cohesive or non-co-

hesive rocks, soils, clastic cemented rocks, sandy 

soils, and other granular materials. 

A simple soil model is simulated by defining 

five parameters: density, shear modulus, Pois-

son's ratio, friction angle, cohesion value (shear 

strength at zero normal stress), dilation angle (ra-

dians). 

The yield surface is given by the equation:  

 

max nC tan( )    ,                (29) 

where С – parameter that determines of the co-

hesion; φ  - friction angle; σn – normal tension; 

τn – maximum shear stress.  

The plastic potential function has the form: 

 

max min const   ,             (30) 
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where β is determined based on the following 

dependence 

 

 1 sin

1 sin( )

 
 

 
.              (31) 

 

Plastic deformation is determined: 

 

п pij pij

2

3
    ,                (32) 

 

The angles of friction and expansion φ and ψ 

can change depending on the plastic deformation 

(corresponding parameters LCPHIEP and LCP-

SIEP). For modeling strongly consolidated ma-

terials with large shear strains, as the strain in-

creases, the expansion angle usually decreases to 

zero, and the friction angle decreases to a lower 

value. Also, the shear modulus can decrease un-

der similar conditions. To define parameters 

LCPHIEP and LCPSIEP tabular values must be 

loaded.  

Load curves LCCPDR, LCCPT, LCCJDR 

and LCCJT allow additional cohesion to be 

added as a function of time. Additional cohesion 

is intended for use in the initial stages of analysis 

to ensure that gravity or other loads are applied 

without cracking or yielding, and to control the 

cracking or yielding process. If the parameters 

LCCPDR, LCCPT, LCCJDR and LCCJT are not 

specified, then additional cohesion is not applied 

[3]. 

 Parameter LCSFAC allows you to set the 

strength factor as a function of time. This func-

tion is designed to gradually reduce the strength 

of the material in order to study the safety fac-

tors. To set the coefficient values, it is necessary 

to load the load curve. If there is no curve, it is 

possible to set a constant coefficient of 1. When 

setting values greater than one, problems with 

stability may arise. An alternative solution for in-

troducing time-dependent properties is the abil-

ity to define time functions in the parameters 

GMOD, CVAL and PHI using load curves for 

parameters LCGMT, LCCVT and LCPHT in ac-

cordance [3]. 

The parameter is responsible for choosing a 

soil or rock model NJOINT. Parameter for soil 

NJOINT is taken as equal 0. Modeling of rocks 

is carried out according to a similar mechanism 

that is embedded in the model - connected stone. 

When modeling rocks, the parameter LOCAL 

must be equal 0. This parameter corresponds to 

the coordinate system in which the angles will be 

determined – DIP та DIPANG. 

In the model, it is possible to set the anisot-

ropy due to the parameter ANISO, which applies 

to elastic shear stiffness in global planes XZ and 

YZ. 

Model of Jointed Rock. This material model 

is similar to the Drucker-Prager and Coulomb-

Mohr models. In order not to take into account 

the flow surfaces, it is necessary to set the value 

of the parameter ELASTIC equal 1.  

Form factor of the material RKF it is not de-

sirable to set it to a value below 0.75.  

Just as in the Coulomb-Mohr model, it is pos-

sible with the help of load curves LCCPDR, 

LCCPT, LCCJDR and LCCJT specify additional 

cohesion as a function of time.  

Isotropic Elastic-Plastic With Oriented 

Cracks model. This model is used to model brit-

tle materials (ceramics) or porous materials, such 

as concrete, which undergo failure due to high 

tensile loads. Basically, it can be an isotropic 

elastoplastic or elastic material with an oriented 

crack. Mises flow condition:  

 
3

y

2J
3


   ,                   (33) 

  

where J2 is determined based on the equation (2); 

plastic stress 
y  is a function of the effective 

plastic strain p

eff  and modulus of plastic 

strengthening Ep:  

 
p

y 0 p effE     ,               (34) 

 

Effective plastic deformation:  

 
t

p p

eff eff

0

d   ,                    (35) 

 

The pressure in this model is determined by 

evaluating the equations of state. In general, the 

fracture model with an oriented crack is based on 

the maximum stress criterion. 
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CONCLUSIONS 

 

Based on the analysis of common physical 

models of geological rocks, the Coulomb-Mohr 

model is best suited for describing strong rocks 

such as granite, gabbro, and marble. However, 

the geological cap and Schwer-Murray models 

are more flexible and universal. The specified 

models contain appropriate algorithms that allow 

obtaining a better picture of the stressed and de-

formed states under the conditions of dynamic 

destruction of materials. In the Coulomb-Mohr 

model, the volumetric response to deformation is 

purely elastic. While in the geological model or 

Schwer-Murray model, the volumetric response 

under loads is elastic in the range up to some 

point κ. After point κ, the system passes into the 

zone of plastic volumetric deformation (compac-

tion), which is generated at a rate controlled by 

the law of hardening. In turn, kinematic strength-

ening leads to hysteresis dissipation of energy 

under conditions of cyclic loading. In addition, 

the Schwer-Murray model implements a mecha-

nism that allows investigating the accumulation 

of damage. The shortcomings of the geologic 

model and the Schwer-Murray model include a 

significant set of parameters that can be deter-

mined purely experimentally. 

 
REFERENCES 

 

1. Viacheslav Loveykin, Dmytro Mishchuk, 

Yevhen Mishchuk. (2022). Optimization of ma-

nipulator's motion mode on elastic base according 

to the criteria of the minimum central square value 

of drive torque. Strength of Materials and Theory 

of Structures, V.109, 403-415. https://doi.org/ 

10.32347/2410-2547.2022.109.403-415   

2. Abrashkevich, Y., Prystaylo, M., & Polishchuk, 

A. (2022). Mathematical model of heat distribu-

tion in an abrasive wheel. Gіrnichі, budіvelnі, 

Dorozhnі Ta melіorativnі Mashini, 100, 5–11. 

https://doi.org/10.32347/gbdmm.2022.100.0101 .  

3.  LS-Dyna (2024). Keyword User Manual. Volume 

II. Material Models. Ansys Inc. P.2155. 

4.  Michael A. Thomas, Daniel E. Chitty, Martin 

L. Gildea, and Casey M. T’Kindt. (2008). Con-

stitutive Soil Properties for Unwashed Sand and 

Kennedy Space Center. Applied Research Asso-

ciates, Inc., Albuquerque, New Mexico. 

NASA/CR-2008-215334. 

5.  Isenberg, J., Vaughan, D. K., & Sandler, I. S. 

(1978). Nonlinear soil-structure interaction. Final 

report. 

6. Chen, W., & Baladi, G. Y. (1985). Soil Plasticity: 

Theory and Implementation. 

7. Schwer L. E. and Murray Y. D. (1994). A three-

invariant smooth cap model with mixed harden-

ing. Int. J. Numer. Anal. Meth. Geomech., 18, 

657-688. 

8.  Murray Y. (2007). Users Manual for LS-DYNA 

Concrete Material Model 159. Publication no. 

FHWA-HRT-05-062. Federal Highway Admin-

istration. 

9. Sandler I. S. and Rubin D. (1979). An Algorithm 

and a modular subroutine for the cap model. Int’l. 

J. Numer. Analy. Meth. Geomech., 3, 173 – 186. 

10. Simo J. C., Kennedy J. G. and Govindjee S. 

(1988). NonSmooth multisurface viscoplasticity: 

Loading/unloading conditions and numerical al-

gorithms. International Journal for Numerical 

Methods in Engineering, 26, 2161 - 2185. 

11. Simo J. C., J W. Ju, K. S. Pister and R. L. Tay-

lor. (1988). Assessment of cap model: consistent 

return algorithms and ratedependent extension, 

Journal of Engineering Mechanics, 114, 191-218. 

 

 
Аналіз поширених геологічних моделей  

матеріалів 
 

Євген Міщук 

 

Київський національний університет  

будівництва і архітектури 

 

Анотація. В роботі виконаний аналіз фізич-

них моделей, які використовуються при дослі-

дженні напруженого стану геологічних порід. До 

поширених фізичними моделей, відносяться: 1) 

грунту та піни; 2) псевдо – тензор; 3) геологічна; 

4) Швера-Мюррея; 5) континуальна поверхня ша-

пки; 6) Кулона-Мора; 6) з’єднаного каменю. На-

ведено графічне представлення опису моделі гру-

нта та піни. На початкових етапах навантаження 

при малих деформаціях модель поводить себе лі-

нійно-пружно. При збільшенні рівня деформацій 

перетворюється в нелінійну модель. Графічне 

представлення моделі псевдо-тензора відображає 

два режими роботи моделі в залежності від фізи-

чних властивостей матеріалу. Геологічна модель 

представляє із себе один із підвидів моделі геоло-

гічної шапки і використовується при вирішенні 

геомеханічних проблем, а також при моделю-

ванні таких матеріалів, як бетон. Графічне пред-

ставлення геологічної моделі описується трьома 

https://doi.org/%2010.32347/2410-2547.2022.109.403-415
https://doi.org/%2010.32347/2410-2547.2022.109.403-415
https://doi.org/10.32347/gbdmm.2022.100.0101
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кривими, функції, яких наведені в роботі. Модель 

Швера-Мюррея є розширеною версією геологіч-

ної моделі, яка включає вязкопластичність для 

розрахунку швидкісних ефектів і механіки пош-

коджень. Призначена для дослідження таких ма-

теріалів, як грунти, бетон  та гірські породи. Вдо-

сконаленою моделлю Швера-Мюррея є модель 

континуальної поверхні шапки (CSCM), повер-

хня текучості якої визначається трьома інваріан-

тами напружень. Модель Кулона-Мора призна-

чена для дослідження твердих елементів, товстих 

оболонок і частинок SPH. Використовується для 

представлення зв’язних або незв’язних гірських 

порід, ґрунтів, уламкових зцементованих гірсь-

ких порід, піщаних ґрунтів та інших зернистих 

матеріалів. Модель з’єднаного каменю є анало-

гом моделей Друкера-Прагера та Кулона-Мора. 

Модель орієнтованої тріщини використовується 

для моделювання крихких матеріалів (кераміка) 

або пористих матеріалів, таких як бетон, і які за-

знають руйнування внаслідок великих наванта-

жень розтягу. В основному це може бути ізотро-

пний пружнопластичний або пружний матеріал із 

орієнтованою тріщиною.     

Ключові слова: псевдо-тензор, інваріант, гра-

ниця текучості, пластична деформація, руйну-

вання, зміцнення, бетон, гірські породи, грунт. 

 

 

 

 


