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Abstract. The second part of the article pre-
sents the training mechanism of an artificial neural
network (ANN), the structure of which was devel-
oped in the previous study. A significant amount of
training data (85451 training pairs), the size of the
bach (2000), the number of training rounds
(500000), as well as the depth of the ANN allowed
us to obtain a fairly low training loss (1.52-10)
and validation loss (1.99-10°). In addition, for
almost the entire test data the ANN showed a high-
quality prediction of the coefficients of the optimal
controller. This statement was supported with the
maximum and root-mean-square prediction errors.
However, individual values of the coefficient pre-
diction errors doubt the quality of the optimal con-
trol of the system's motion. In order to assess this
quality for these cases, the worst result in terms of
prediction error was studied. This allowed us to
establish that the deviation of the coefficients (the
maximum value is 7.86%) does not cause a signifi-
cant deviation of the dynamics of the “crane-load”
system from that obtained by using the optimal
coefficients of the linear-quadratic controller. For
this purpose, graphical dependencies of the phase
portrait of the pendulum oscillations of the load,
the control function, the driving force, and the
speed of the crane movement were built and ana-
lyzed.

The article notes one of the advantages of the
obtained ANN — the speed of obtaining optimal
control. It follows from the fact that access to the
ANN requires significantly fewer computational
resources than those required for solving the Ric-
cati equations.

The final part of the article provides recom-
mendations for implementing the obtained results
in practice. They consist of the fact that the input
vector, which contains the normalized values of the
load mass, the length of the flexible suspension,
and the control weight coefficient, is transmitted to
the input of the ANN. This allows us to obtain the
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predicted values of the coefficients of the optimal
controller. In the further, they are used to find the
optimal control strategy. The latter, in turn, is im-
plemented by means of controlled electric drive
mechanisms of the crane.

Keywords: crane, solutions set, neural network
training, testing, optimal control.

INTRODUCTION

One of the important issues in crane exploi-
tation is connected with the design of crane
control strategies. In the first part of the study,
we focused on the optimal in the sense of
LQR-criterion controls. The articles, that refer
to the intelligent approaches, are stressed in
the current study. Generally speaking, the term
mintelligent” includes a plethora of methods.
Among them, we pointed to artificial neural
networks (ANN).

In the scientific work [1] fuzzy-logic (FL),
adaptive neuro fuzzy inference system
(ANFIS), and ANN were exploited to control
the gantry crane described with the nonlinear
pendulum model. The set of indicators (set-
tling time, load position overshoot, and steady-
state error) approved the superiority of ANFIS
over ANN, which may be explained by the
simple structure of the latter (only one hidden
layer).

In the study [2] a deep learning-based con-
tainer crane control model was designed. It
outputs the signal of force, that governs the
movement of the trolley and hoist. Inputs of
ANN are target position, initial position, and
weight of the load. The study results were ap-
proved with the numerical simulation.
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MODELING WORKFLOWS

A sensorless anti-swing control method for
automatic gantry cranes is designed in the
study [3]. Based on ANN the soft sensor is
developed to implement the anti-swing policy
of the crane movement. The ANN is a multi-
layer perceptron (as a soft sensor), its exploita-
tion provides a sensorless method to control
load oscillations.

A similar approach is developed in the
work [4]. The obtained in the study ANN was
compared with the previously developed non-
linear crane controller. The authors concluded,
that the proposed control law refers to good
tracking of load movement including its oscil-
lations suppressing. Another positive feature
of the developed ANN — it does not require the
specific values of crane parameters, i.e. vol-
ume of the efforts of crane modeling is not
significant.
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Fig. 1. Scheme of the developed ANN structure

However, the analyzed works are based on
numerical simulations, they lack practical ap-
proval of the research results. Thus, their out-
puts should be considered as important but
only as an intermediate stage of the develop-
ment procedure.

One of the scientific works worth mention-
ing [5] reveals the used approaches, where
ANN has been applied for crane control prob-
lems. Amon them: combination with classical
controllers to improve the control strategies [6-
8] and design control operators [9], estimate
the impacts, that affect the crane dynamics [9],
and crane modelling [10], etc.

In the first part of the investigation, the set
of LQR-problem solutions was obtained. This
makes it possible to use it in order to train the
ANN and test its ability to properly predict the
values of optimal controller gains. The current
study is dedicated to the described approach.

PURPOSE OF THE PAPER

The paper’s purpose is to obtain properly
trained ANN, which can predict the gains val-
ues of optimal (by LQR-criterion) controller of
crane dynamical system.

RESEARCH RESULTS

The first stage of the study is connected
with its structure design. We used deep ANN,
which includes 4 hidden layers of neurons.
Each of the hidden layers has fifty neurons, the
output layer includes 5 neurons — as the length
of the output vector G=(G1, Gz, Gs, Ga, Gs)".

Three neurons form the input layer - as the
number of inputs in the training pairs

(M,,, L, 8)" —G,. The general view of the
developed ANN is shown in Fig. 1.
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The number of hidden layers and neurons in
them is grounded by the requirement of good
approximation of the available data. This
structure is obtained by multiple testing of trial
ANNs. The selected ANN variant (Fig. 1) is
the best one in the sense of the ,,structure sim-
plicity — good prediction ability” trade-off.

The next step is ANN training, which is
carried out with ADAM optimizer [11].

The most important indicators of ANN
training procedure, which influence the quality
of ANN training, are given in Table 1.

Table 1. Numerical values of ANN training
procedure

Parameter Value

Bach size 2-10°

Training rounds 5-10°
Final training loss function value 1.52-10°°
Final validation loss function value | 1.99-10°
Total training time 2.52-10%
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Again, the bach size and training rounds pa-
rameters were selected empirically.

In order to indicate the dynamics of ANN
training, the corresponding plot was built (Fig.
2). It is clear (Fig. 2) that the dramatic reduc-
tion of loss function was in the early stage of
the ANN training (approximately on the first
10° iterations). Further iterations did not bring
much improvements. We have decided to pre-
serve the obtained result.

The analysis of the presented plots (Fig. 3)
indicates, that most values of the errors are
located around the horizontal axis, i.e. they are
very low in values. The number of spikes in
plots (Fig. 2) doesn’t exceed 20. Thus, the
number of relatively big errors is quite small.

In order to make the analysis more com-
plete, the indicators were calculated (Table 2).
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Fig. 2. Plots of loss function reduction on the training set (orange curve) and on the validation set (blue

curve)

The obtained values of ANN weights are
presented in the external file ,,Weights of
trained ANN.txt”. It may be downloaded by
the link [12].

All the biases of the ANN are equal to zero.

In order to estimate the prediction abilities
of the ANN the test set was exploited. For this
purpose, we fed the testing set data to the
ANN input and obtained some output. The
absolute error is the deviation of the outputted
value and the value in the test data. The rela-
tive estimation is obtained by multiplying by
100%:

AG = (AN, T, 3))~Gihoo%=
(AG,, AG,, AG,, AG,, AG;),

where AG:...AGs — errors, each of which cor-

responds to the optimal controller gain (in per-

centage units).

The calculated dot-plots for each of the er-
rors are given in Fig. 3.
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Table 2. Numerical values of ANN testing
errors, %

The corresponding Value
controller gain RMS* | max**
G1 7.73-102 | 2.03
G2 7.62:10% | 1.86
G3 6.52:102 | 2.37
Gs 7.07-102 | 2.16
Gs 1.79-10% | 7.86

* root-mean-square value;
** maximal value of the errors module

The analysis of the data given in Table Il
shows, that RMS values are very small. The
maximal error indicator is in the range
1.86...7.86%. Here we should note, that the
maximal value of error (7.86%) corresponds to
the Gs gain. For this gain, we may stress five
errors, that are bigger than 4% (Fig. 3, e).
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Fig. 3. Plots of dot functions of errors of ANN predictions for each of the controller gains

The provided analysis supports the previous
conclusion — the overall quality of the predic-
tion of controller gains coefficients is quite
high. However, the biggest error value indi-
cates, that the output control may be deterio-
rated — particularly for the considered case. In
order to figure out whether it’s true or not we
found the values of predicted by ANN coeffi-

8

cients G;...Gs for the case of the mentioned
biggest error. They are given in Table 3.

The data in Table 3 clearly indicate, that for
all coefficients but G3 the true and predicted
values are very close to each other. However,
the coefficient Gz changes in the range from -
367057 to 21294. Thus, the difference between
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true (LQR) and predicted by ANN values of
coefficient Gz is minor.

Table 3. Numerical values of predicted by
ANN coefficients and the true coefficients

The controller Coefficients’ values
gain true predicted
G 294780 292542
G, -294773 -294477
Gs 3240.94 7844.62
Gs 629223 624158
Gs 5.79141 5.68504

In the built below plots (Fig. 4) the devia-
tions, which are caused by the difference in
control functions, are minor (gray plots in Fig.
3 present the differences of the functions mul-
tiplied by 10; black plots refer to LQR-optimal
control; subscripts ,,ANN” and ,,LQR” corre-
spond to the method of coefficients calcula-
tion: via Riccati equation solution or via ANN
application). Indeed, the deviations of the co-
efficients do not cause a significant deteriora-
tion of the optimal control strategy. Thus, we
can conclude that the developed in the study
ANN may be exploited as a general predictor
of optimal control coefficients.

One of the benefits of ANN application is
connected with the small duration of optimal
coefficients calculation. Involving the calcula-
tion resources of PC (Intel Core i3, 2.13GHz,
8Hb RAM) the average duration of the current
LQR problem solving equals 0.00220 seconds,
and the duration of access to developed ANN
is 0.00025 seconds, which is by order smaller.
Thus, there is no need to use big computation-
al resources to implement the ANN function in
the control system of the crane.

The concluded part of the study is devoted
to the problem of implementation of the opti-
mal control, that is derived from the trained
ANN. We may propose a scheme, that illus-

Systems

parameters and optimal controller

movement mode

Obtaining gains of

by using trained
requirements entry ANN

trates the concept of ANN application (Fig. 4).

According to the proposed scheme, the first
step is setting the parameters of the system
(weight of the load, length of the cable) and
crane  mode to  perform  (accelera-
tion/deceleration, value of weight coefficient
o, final positions, and velocities of the load).
This step must be carried out with proper sen-
sors. The higher level control system for the
final position and velocities of the load or ref-
erences of their changes over time is mandato-
ry.
The second step involves the ANN, it is fed
with the input vector and returns the optimal
(for particular values of input vector) gains of
the controller. This makes it possible to design
the optimal controller (the third step).

The last step is connected with the applica-
tion of the optimal law, i.e. optimal control
signal is sent to the controlled drive (for in-
stance, varied-frequency drive). The drive
produces the needed electromagnetic torque,
which, in turn, governs the dynamical system
,,crane-load” movement.

CONCLUSIONS

In the article, further investigation provides
the development and testing of ANN. The lat-
ter is a general approximator of the LQR-
problem solutions domain. The second part of
the study shows the training of ANN, its vali-
dation, and testing procedures. The corre-
sponding indicators (training and validation
losses) indicate, that the training was success-
ful. The testing procedure revealed the good
quality of optimal coefficients’ prediction as
well. The worst prediction, made with ANN,
corresponds to almost no deviation from the
optimal dynamics of the system ,,crane-load”
movement.

The obtained from the study results (ANN
with complete information: structure, tensors

Optimal
control
design

Optimal
control
application

Fig. 4. The scheme of developed ANN application in the practice of crane exploitation
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of weights, and matrix of biases) are down-
loaded to the external resource. This made it
possible for the implementation of developed
ANN in the crane control system, which may
suppress load pendulum oscillations in an op-
timal manner with a wide variety of load mass
and length of load suspension (cable).
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Po3podka y3arajibHeHOro JiiHiiiHO-
KBQ/IPATHYHOI0 Helipopery/aaTopa CUCTeMH
»KpaH-BaHTax”. YacTtuna 2

IOpiii Pomacesuu

Hayionanvruil ynigepcumem 6iopecypcia i
nPUPOOOKOPUCTNYBAHHA YKpaiHu

AHoTauis. Y IpyTiid 9YacTHHI CTATTI MpeacTaB-
JIEHO MEXaHi3M HaBYaHHA INTYYHOI HEHPOHHOI
Mepexi (ILTHM) crpykrypa sikoi Oymna po3poOiieHa
y TIONEPEeIHbOMY IOCITi/DKEHHI. 3Ha4HWiA 00CsT
HaBYanbHUX AaHux (85451 HaBwanbHWX Tap), Be-
nuauHa nakety HaB4aHHs (2000), KinbKiCTh payH-
niB HaBuaHHs (500000), a takox rnmbuna LTHM
JO3BOJIWJIM OTPUMATH JIOCUTh HU3BKY HOXHOKY
napuanHg (1,52-10%) rta Bamimauii (1,99-10F).
Kpim Toro, maiike Ha Bcili TecToBili BHOIpIi
[IIHM Takox moOKa3ala JOCHUThH SKiCHe mependa-
YeHHsI KOe(iIli€HTIB ONTUMANBHOTO PEryISITOpA.
s uporo Oy po3paxoBaHi MaKCUMAaJIbHI Ta
CepeTHbOKBAIPATHYHI MMOXUOKH MPOTHO3YBaHHSI.

OpnHak, OKpemi 3Hau€HHS MOXUOOK MPOTHO3Y-
BaHHS KOE(]IIIEHTIB MOCTABUIIM TiJl CYMHIB SIKICTh
ONTUMAJILHOTO PETYJIOBaHHS pyXy cuctemu. s
TOT0, TIO0 OILIHUTH IO SKICTH OyJI0 BUBYEHO HaMi-
ripmuii y ceHci MOXUOKH MPOrHO3YBaHHS Pe3yiib-
taT. Lle 7M03BONMMIIO BCTAHOBUTH, IO BIJIXWICHHS
BEJINYMH KOoe]ilieHTiB (MakcuMaibHO Ha 7,86%)
HE CIPHUYUHSIE 3HAYHOTO BiJXWJICHHS JWHAMIKH
PYXy CHCTEMH ,,KpaH-BaHTaX BiJ[ TOTO, IO OTPHU-
MaHO 3a JIOTIOMOTOK ONTHMAILHUX KOE]Iilli€HTiB
JiHIHHO-KBaAPAaTUYHOTO peryisitopa. [ns mporo
noOy/I0BaHO Ta MpoaHaNi30BaHO TpadivHi 3amex-
HOCTI ()a30BOT0 OPTPETY MAITHUKOBUX KOJINBAaHb

ISSN(online)2709-6149. Mining, constructional,
road and melioration machines, 105, 2025, 5-11


https://drive.google.com/file/d/18dSAvQbxoRsOCfZvdWedoLZyTdETVhGG/view?usp=sharing
https://drive.google.com/file/d/18dSAvQbxoRsOCfZvdWedoLZyTdETVhGG/view?usp=sharing
https://drive.google.com/file/d/18dSAvQbxoRsOCfZvdWedoLZyTdETVhGG/view?usp=sharing
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BaHTaXy, GYHKUIT KEPyBaHHS, PyLIIIHOTO 3yCHILIS
Ta MIBUIKOCTI pyXy KpaHa.

VY crarTi BigMideHa oHA i3 IepeBar OTPUMAaHO1
IIHM - mBuHIKOAisS OTPUMaHHS ONTHMAIHHOTO
KepyBaHHs. BoHa BumumBae i3 Toro, 1o oCTyn 10
[ITHM moTpebye 3HAYHO MEHIIUX OOYHCITIOBAIIb-
HUX pecypciB, aHDK Ti, IO mNOTPiOHI s
PO3B’si3aHHs piBHAHD Pikkari.

VY 3akmouYHId YacTHHI CTATTi HaBEIEHO PEKO-
MEHaIlii CTOCOBHO peai3arii OTpUMaHNX pe3yIib-
TaTiB Ha NpakTuli. BoHW monsirawoTs y ToMy, IO
Ha BXig IIIHM mepenaioTs BXigHHI BEKTOp, IO
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MICTUTh HOPMOBAHI 3HAYEHHS MAacH BaHTaXy, JO-
BXXMHH THYYKOTO IIABICY Ta KoeQillieHTa Baru
kepyBaHHs. [le J10305151€ OTpUMATH MPOTHO3HI 3HA-
YCHHSI KOC(II[IEHTIB ONTUMAIILHOTO peryisTopa. Y
MOJTAVILIIOMY 1X BUKOPHCTOBYIOTH JUIS BIiJIIYKY-
BaHHS ONTHUMAaJbHOI cTpaTerii kepyBaHHsI. OcTaH-
HSI, B CBOIO YEpry, peali3yeThecsi 3aco0amMu KepoBa-
HUX eJIEKTPONPUBOAHUX MEXaHI3MiB KpaHa.

KurouoBi cioBa: BaHTOKOMITHOMHHHA KpaH,
MHOKHMHA PO3B’S3KiB, TPEHYBaHHA ITYYHOI Mepe-
X1, TeCTyBaHHS, OITUMAJIbHE KEPYBaHHS.
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