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Abstract. The construction and analysis of the
equations of the control system in the space of the
state vector x is called the state space method. The
modern theory of vibration protection systems is
based on the concept of state space. Vibration pro-
tection systems use not only mechanical, but also
other electronic, thermal, and hydraulic methods of
energy conversion: such conversions are almost al-
ways carried out on one object. Due to these circum-
stances, the concept of state requires the expansion
and use of such a set of variable states that its ele-
ments are universally adapted for use in various
cases. Thus, this approach is based on topological
representations of the continuity of energy change
and conversion. This concept is the most modern
and is the basis of a special modeling language us-
ing connection graph methods. The role of adaptive
dampers, which can change their characteristics, is
significant in modern mechanical engineering and
construction. In turn, the graph model allows you to
quickly change the structure of dampers and study
the influence of parameters on the dynamics of the
system. The method of the language of communica-
tion graphs allows obtaining matrix equations of vi-
bration protection systems in the state space, in the
form of state and observation equations. This ap-
proach makes it possible to consider many different
types of vibration protection systems with a dy-
namic damper, including in a nonlinear formulation,
as well as with controlled characteristics of the fluid
element. The paper considers the modeling of vibra-
tion protection systems that have a dynamic vibra-
tion damper. The main assumptions necessary for
the construction of a vibration protection system
with a dynamic vibration damper are formulated.
Nonlinear inertia and resistance functions are de-
rived, which will provide the possibility of model-
ing the described features of the internal motion of
the fluid in . A communication graph is constructed
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for the nonlinear formulation of the problem. The
state equation and observation equation are com-
piled.

Keywords: communication graphs, dynamic os-
cillation damper, optimization, observation equa-
tion, equation of state.

INTRODUCTION

The construction and analysis of the control
system equations in the space of the state vector
x is called the state space method [1]. The
modern theory of vibration protection systems
is based on the concept of state space [2]. The
state space is a set X consisting of elements x(t),
which are defined by the vector [xi], and =1, 2
..., h for a particular system [2]. For dynamic
systems of mechanics, the state is defined by a
pair of variables: the coordinate x and the
velocity v or the displacement x, and the
momentum g, which form the so-called state
space or phase space [3],[4].

In vibration protection systems, not only
mechanical, but also other electronic, thermal,
and hydraulic methods of energy conversion
are used: such conversions are almost always
carried out on one object [5]. Due to these
circumstances, the concept of a state requires
the expansion and use of such a set of variable
states that its elements are universally adapted
for use in various cases [6]. From the point of
view of energy, it is convenient to use energy
dynamic variables for a universal description:
potential e (t) and flow f (t), which determine
the concentration and movement of energy,
which is transformed in various ways during the
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functioning of the vibration protection system,
while maintaining its continuity. Thus, this
approach is  based on  topological
representations of the continuity of energy
change and conversion. This concept is the
most modern and is the basis of a special
modeling language using connection graph
methods [7]. Using the language of connection
graphs, it is possible to build a model of the
vibration protection system in the form of a
system of differential equations.

The role of adaptive dampers, which can
change their characteristics, is significant in
modern ~ mechanical  engineering  and
construction [8], [17]. In turn, the graph model
allows you to quickly change the structure of
dampers and study the influence of parameters
on the dynamics of the system.

LITERATURE REVIEW

One of the methods for modeling technical
systems is the method of functionally finite el-
ements [9],[10]. When using this method, indi-
vidual elementary material elements are distin-
guished in the system, which are considered as
carriers of certain physical properties [11]. In
addition, the system includes models of energy
sources and converters of energy flow parame-
ters [12]. The disadvantage of this method is the
complexity of modeling nonlinear systems and
systems in which different physical levels inter-
act. In addition, there are difficulties in integrat-
ing the method into modern software com-
plexes.

One of the directions of development of the
theory of connection graphs is represented by a
method that generates connection graphs from
the Lagrange function [13], [14]. It produces
correct but complex connection structures using
complex formulas and inertial terms for trans-
former and gyrator modules [15]. In addition, it
can be used with a discrete finite element
scheme to simulate a wide range of problems of
the dynamics of a solid continuous medium
[16]. The disadvantages include poor adapta-
tion of this method to modeling systems with
strong damping and frictional losses.

In [18], a dynamic vibration damper is stud-
ied, represented as an elastic cantilever beam
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with a system of concentrated masses. The os-
cillations of the system are described by a
boundary value problem with a discrete right-
hand side. The disadvantage of this method of
modeling systems is the lack of an explicit rep-
resentation of the topology or structural con-
nections between elements, and adaptability
problems (changing one element of the system
requires rewriting the entire boundary value
problem).

GOAL AND PROBLEM STATEMENT

Modeling of a vibration protection system
that has a dynamic vibration damper containing
a special type of fluid element mounted on a
supporting body. Building a model of a vibra-
tion protection system using the method of the
language of connection graphs in linear and
nonlinear problem formulation.

MAIN PART

A dynamic damper has a sealed chamber of
various shapes, which is filled with a viscous
incompressible fluid. Inside the chamber, a spe-
cial type of solid body is placed on an elastic
suspension, which is capable of performing
translational oscillations along the chamber.
These oscillations are transmitted to the fluid,
the elastic suspension, the supporting body and
provide vibration protection.

The method of the language of connection
graphs allows to obtain matrix equations of vi-
bration protection systems in the state space, in
the form of equations of state and observation.
This approach makes it possible to consider
many different types of vibration protection
systems with a dynamic damper, including in a
nonlinear formulation, as well as with con-
trolled characteristics of the fluid element.

When a dynamic damper moves in a liquid,
it experiences resistance, which is caused by the
viscosity of the liquid Rz and its inertia la. In
most cases, if we do not take into account the
possibility of separation of 12 from the liquid,
that is, cavitation is absent not only on the walls
of the chamber, but also on the body of the dy-
namic damper itself, then we can sum up the in-
ert properties of the solid body of the dynamic
damper and the liquid I, + la = I>a. The above
assumptions provide a linear formulation of the
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problem, assuming them, we can build the sim-
plest model of the vibration protection system,
Fig. 1.

The following basic notations are adopted
for the model: Iy : my - inertia (mass) of the sup-
porting body; I2 : m2 - inertia (mass) of a solid
body; Iz : m3 - inertia (mass) of the dynamic
damper fluid; la : ma - inertia (mass involved)
of the liquid; Ry : k1 - resistance (viscosity) of
the suspension of the supporting body; R2 ; k> -
resistance (viscosity) of the dynamic damper
suspension; Ci: ¢ - elasticity (compliance) of
the suspension of the supporting body; Cs : c3-
elasticity (compliance) of the dynamic damper

suspension.
Ci Ra
— p— Ii.mg
. L. m2
I I;-ms
qlr ! Ii-ms
Rik
Rako
Ci:c1
4 I Cr2

Ci Ri
E 410

Fig. 1. Vibration protection object with vibra-
tion damper

Let us construct a communication graph that
corresponds to the linear formulation of the
problem. It should be noted that such a formu-
lation of the problem is greatly simplified and
does not take into account the complex dynam-
ics of the internal motion of the fluid and the
influence of this motion on the vibration protec-
tion effect. To overcome these difficulties,
within the framework of the method of the lan-
guage of communication graphs, nonlinear in-
ertia and resistance functions can be introduced,
which will provide the possibility of modeling
the described features of the internal motion of
the fluid in a dynamic damper. These consider-
ations are reflected in the communication graph
for the nonlinear formulation of the problem in
Fig. 2:
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Fig. 2. Communication graph for nonlinear
problem formulation

To model the nonlinear characteristics of
the fluid inertia and its resistance, nonlinear
functions are introduced: @ 13(f1) - simulate the
interaction of the chamber, fluid, solid body of
the dynamic damper; ®i23(f1) - model the non-
linearities that arise during the motion of a rigid
body, a dynamic damper, and a fluid.

Let us compose, based on the connection
graph, the equation of state. Let us denote by
numbers the components of the connection
graphs: momentum on inertia p1, p2 and dis-
placement on elasticity gs, gs; input vector of
the stream variable source fio. The state of the
system is determined by the vector: (p1, p2, qa,
qa).

The equations of state of the vibration pro-
tection system with dynamic damper in general
form in the state space have the form:

p1=€1; P2 = €2; 3 = f3; g4 =f4 1)

Using the connection graph and the relation
of the transitional node structure, we construct
the defining equation for the transitional struc-
tures p, s:

p:|e9:e1:elo; s:|f9:f3:f5:f8;
fo="f+1, € =€, +6 +8 )

p:|e3:e2:e7;s:|f7:f4: f6.
fo="1,+1, e, =e,+6

Applying the relations for transition struc-
tures and the expressions for the elements I, R,
C of the connection graphs, substituting them
into the equation of states (for a linear problem)
after transformations, we obtain:
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-1

Py =~(Ri+R)15P =R, 1P, +C.gq +
+C,0, + (R +R,) fio;

D, =—R,1;p,—R,14p,+C;'q, +R, f,y; (3)
4, =l p, + fi;

4, =—1,C,—1,,C, + f.

For the nonlinear equation of state problem

of vibration protection systems with a dynamic
damper:

b =—(R+R)P. (p) - R, (p,)+
+C,'q, +C,'q, + (R, +R,) fyy;

b, =—R®. (p) - R,P;. (p,) +
+C,'q, +R, f,o;

Gy = —D;_. (Py) + fio;

Gy ==D, (p) = Pp. (py) + fro-

I3

(4)

The system of equations in matrix form has
the following form:

][RR R.1 ©* Clpy|
pz —R2|I;p1 _Rzlgé 0 C;l P,
R,+R
Rt R: (5)
Rz
qs _ _Iisl 0 00 0, +H
Ay |13 —1 0 Ofja, [

Thus, based on the model of a vibration pro-
tection system with a dynamic damper, repre-
sented in the form of connection graphs, a sys-
tem of differential equations in the state space
of the form x™ = Ax + Bu where:

X = F)l A= _(R1+R2)|1_; _RZIZé Cl_l Cgl

P, ~Rylzp, —Rylp 0 CF ©)
X=(?|3 A=—Il’§ 0 0O

4 Iy —1% 00

The system of equations in matrix form is
represented as:
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By =~ (R, +R,) D7 () - R, (py) +Cra, +
+C,'q, + (R, +R,)fy;

P =R, (p) ~RoP: (o) +Ca, + Rty
Gy ==, () +fio:

A, ==®,; (p1) =Py, (P,) +fio-

7)

The system of equations can be written in
the following form: x” = F(x) + Bu where:

Py =—(Ry+R,) 1P, ~R, 1P, +Cllg, +

+C,', + (R, + R, )y ®)
b, =—R,IIp, —R,I;ip, + C;lq, + R,f,;

Gy =3P, +y;

-1 -1
q, __|13C1 - IZOCZ +f10-

In addition to the equations of state of the
system under study, for its complete descrip-
tion, observation equations are required, which
relate the state to the observable output param-
eter of the system. To find these equations, it is
necessary to specify which parameter is the out-
put of the system. In the case under considera-
tion, this may be the displacement of mass 113
from the equilibrium superposition q1 or the ve-
locity f4. Assuming that the state vector X is
known, we obtain the observation equation:

If y=qz, then for a linear problem

e

For a nonlinear problem
-1
q, = [—J. d)dt} X
13
CONCLUSIONS

The obtained equations of vibration protec-
tion systems with a dynamic damper describe
its behavior in the state space. The main method
for solving these problems is to solve a system
of linear and nonlinear first-order differential
equations given in normal forms. Currently,
various application software packages have
been developed that provide the ability to
quickly analyze the qualitative and quantitative
behavior of the system, obtain its amplitude-
frequency characteristics and optimize parame-
ters.
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CTpyKTypHe MOJeTIOBAHHSA AeMII{epHOI
cUcTeMH MeToA0M rpadis 3B’ A3KY

Banepiii Axosenxo®, Cepeiii Opuwenko?,
Eseen Miugyr®

123 Kuigcoruii nayionansnutl ynieepcumem
0yOieHUYmMea i apximexkmypu

Anotaunisi. [ToOya0Ba Ta aHai3 cUCTEM yIpaB-
JIIHHS 3pYYHO 3IIMCHIOBAaTH B TPOCTOPI BEKTOpPA
CTaHy X TOMY IIO CyYacHa Teopis BiOpO3axXUCHHX
cucteM 0a3yeThCsl Ha MOHATTI MPOCTOPY CTaHy. Y
cucTeMax BiOpO3aXUCTy BHUKOPUCTOBYIOTHCS HE
TIJTPKY MEXaHidHi, a ¥ iHII eJeKTPOHHI, TePMIidHi,
TiApaBiIivuHI METOIM TIEPETBOPEHHS eHeprii: Maiike
3aBX/IU TaKi NEPETBOPSHHSI 3MIMCHIOIOTHCS HA OJI-
HOMY 00’€KTi. 3aBISKH ITUM OOCTaBHHAM MOHATTS
CTaHy BHMMAara€ pPO3IMIMPEHHS N YXXUBAHHS TaKoi
MHOXHMHH 3MiHHI CTaHH, 00 HOTro eneMeHTH Oyiin
yHiBepCaJIbHO MPUCTOCOBAHI JI0 BXXHBAHHS B Pi3HO-
MaHITHUX BHUNaJKaxX. TakUM UYHHOM, B OCHOBY
BOTO IMIJAXOAY MOKJIJCHI TOIOJIOTIYHI MOJaHHS
po Oe3nepepBHICTh 3MiHU W TIEPETBOPEHHSI eHep-
rii. Lls xoHmemnis HalOibI cydacHa ¥ MmokJaieHa
B OCHOBY CIIEL[iaJIbHOI MOBH MOJEIIOBaHHS METO-
namu TpadiB 3B's3ky. Ponbs agantuBHHX nemmde-
PiB, SIKi MOXKYTb 3MIHIOBATH CBOT XapaKTEPUCTUKU €
3HAYHOIO B Cy4aCHOMY MaImuHOOY/{yBaHHI Ta Oyi-
BHUITBI. B cBOIO uepry rpadosa Mojenb 103BOJISIE
IIBUIKO 3MIHIOBATH CTPYKTYpY AeMiidep Ta A0CIi-
JDKYBATH BIUIMB NTApaMETPiB HA TUHAMIKY CUCTEMHU.
Metox mMoBu rpadiB 3B’SI3Ky A03BOJISIE OTPUMATH
MaTpU4HI PiBHSHHS CUCTEM BIOpPO3aXHCTy B MpOC-
TOpi cTaHiB, y BUTJISAL PIBHSAHB CTaHy 1 crocrepe-
xeHHs. Takuii maxin 1ae MOXKIHMBICTD PO3TISAATH
0e3I1iu pi3HUX BUIIB BIOPO3aXHUCHUX CUCTEM 3 -
HaMIYHUM JieMIipepoM, y TOMY YHCII B HETiHIHHIH
MOCTaHOBLIi, @ TAKOXK 3 KEPOBAaHUMH XapaKTePUCTHU-
KaMH PIIUHHOTO ejeMeHTa. B po0oTi po3risHyTo
MOJICJIIOBaHHSI CUCTEMH BiOpPO3axHCTy, SIKi MalOTh
JUHAMIYHUH racutensd KonuBaHb. CHOpMyIIbOBaHO
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OCHOBHI JIOMYIIIEHHsI HEOOXiIHI sl TOOYI0BU BiO-
PO3aXHUCHOI CUCTEMH 3 JMHAMIYHUM FaCUTEIEM KO-
nuBaHb. BuBeneHi HenmiHIWHI QyHKIII iHEPTHOCTI 1
OTI0pY, SKi 3a0e31e4aTh MOKIIUBICTh MOJICTIOBAHHS
OIMHICAaHUX OCOOIMBOCTEH BHYTPIIIHBOTO PYyXy pi-
muaE B . [ToOymoBaHo rpad 3B'I3Ky U HENIHIHHOT
MOCTaHOBKM 3anadi. CKIIAJCHO PIBHSHHS CTaHy Ta
PIBHSIHHS CIIOCTEPEKCHHSL.

KaiouoBi cioBa: rpadu 3B°s3Ky, TUHAMIYHUI
TacUTENIb KOJMBaHb, ONTHMI3allis, PIBHIHHS CITO-
CTePEKCHHS, PIBHSIHHS CTaHY.
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